

보도시점

배포시점

배포 2023. 6. 23.(금) 09:00

6G 이동통신을 위한 글로벌 청사진 마련

- 국제전기통신연합(ITU) 이동통신작업반 회의에서 6G 비전 권고(안) 개발 완료 -
- 우리나라는 ITU 6G 비전 개발그룹 의장국으로서 권고(안) 개발 주도 -

과학기술정보통신부(장관 이종호, 이하 '과기정통부')는 6.12.(월)~6.22.(목) 까지 스위스 제네바에서 개최된 제44차 국제전기통신연합(이하 'ITU') 이동 통신작업반(ITU-R WP5D, 이하 '작업반') 회의에서 6세대 이동통신(이하 '6G') 목표 서비스와 핵심 성능 등의 개념을 담은 IMT-2030 프레임워크(이하 '6G 비전') 권고(안) 개발이 완료되었다고 밝혔다.

6G 비전은 '30년까지 추진하게 될 6G 국제표준화의 밑그림으로, 그간 우리나라는 6G 비전의 중요성을 강조하며 ITU에 '6G 비전 개발그룹' 신설을 제안했을 뿐 아니라, '21년 해당 그룹의 신설 이후 의장국(의장 : 대한민국최형진)으로서 권고(안) 수립에 크게 기여해왔다.

'21년 3월 제37차부터 '23년 1월 제43차까지 총 7번에 걸친 작업반 회의에서는 다수의 ITU 회원국과 산업체, 연구기관 등의 의견이 첨예하게 대립해왔으나, 이번 회의에서는 **全산업 분야**에서 핵심 인프라로 활용될 6G 기술의 중요성에 공감하며 권고(안)의 최종 합의를 이루어낼 수 있었다.

이번에 도출된 권고(안)에 따르면, 6G 목표 서비스(usage scenarios)는 ▲ 5G보다 향상된 성능을 기반으로 몰입형 경험을 제공하는 증강현실·디지털 트윈 등 5G 영역을 확장한 통신기반 서비스, ▲ 인공지능 및 센싱과의 결합을 토대로 한 신규 결합 서비스로 정의되었으며, 이 모든 서비스에 적용되어야 하는 특성으로 지속가능성, 보안/개인정보보호/복구성, 연결성 확장, 지능화 개념이 선정되었다.

6G 핵심성능지표로는 기존 5G 지표의 9개 항목*에 더해 6개 항목(커버리지, 포지셔닝, 센싱지표, 인공지능지표, 지속가능성, 상호운용성)이 추가되어 총 15개 항목이 선정되었으며, 이 중에서 신뢰성·지연시간·연결밀도는 5G 대비 최대 10배까지 향상된 목표값을 제시하고 이 외 지표에 대해서는 향후 기술성능요구사항 단계('24~'26년)에서 목표값을 결정하기로 하였다.

* 최대전송속도, 사용자체감속도, 주파수효율, 면적당 트래픽용량, 연결밀도, 이동성, 지연시간, 신뢰성, 보안·개인정보보호·복구성

6G 비전 권고(안)은 올해 9월 ITU 산하 지상통신연구반(SG5) 회의에서 채택되면 이후의 승인절차를 거쳐 올해 11~12월 중 6G 비전 권고로 확정될 예정이며, 이를 바탕으로 성능기준·평가방법 정의('24~'26년). 후보기술 제안 ('27~'28년) 및 평가·선정('28~'29년) 과정을 거쳐 2030년에 6G 표준 개발 및 승인이 완료될 계획이다.

정부는 이러한 6G 경쟁에서 주도권을 확보하기 위해 다각적인 노력을 기울이고 있다. 차세대 네트워크 모범국가로의 도약을 목표로. 올해 2월에 「K-Network 2030 전략」을 발표하였으며, 기존의 6G 원천기술개발 ('21~'25년/총 1.917억원)에 더하여 향후 상용화 기술을 종합적으로 지원하기 위한 **후속 연구개발사업 예비타당성 조사**('24~'28년/총 6,253억원)도 추진하고 있다.

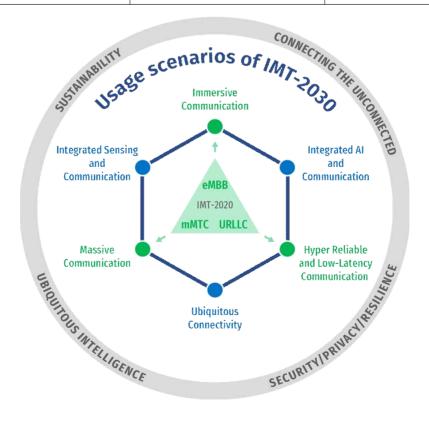
또한, 올해 5월에는 **국내 기업에서** 세계 최대 이동통신 표준단체인 3GPP의 실무그룹 의장을 2명 배출했으며, 통신분야 산·학·연 협력을 강화하고 타산업과 통신의 융합을 통한 새로운 서비스의 창출을 지원하기 위해 6G 포럼이 출범(5.30.)하는 등 산·학·연에서도 다각도로 우리나라의 6G 기술· 표준 선도를 위해 치열하게 노력하고 있다.

과기정통부 홍진배 네트워크정책실장은 "우리나라는 ITU의 6G 비전 권고(안) 합의를 주도하는 등 글로벌 6G 선도를 위해 노력하고 있다"며. "앞으로 본격화될 6G 국제표준화 경쟁에서도 주도권을 유지할 수 있도록 「K-Network 2030 전략」을 기반으로 6G 연구개발 투자 확대, '26년 Pre-6G 기술 시연 등을 차질없이 추진하겠다"고 강조하였다.

붙임 1. ITU 6G 목표 시나리오

2. ITU 6G 핵심성능지표

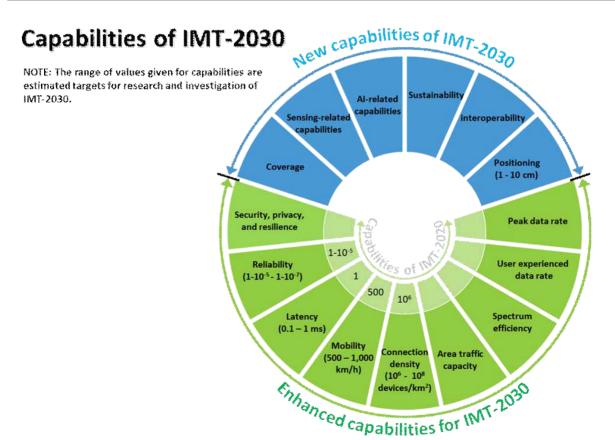
담당 부서	정보보호네트워크정책관	책임자	팀 장	심규열 (044-202-6415)
	혁신네트워크팀	담당자	사무관	도하림 (044-202-6426)
< 공 동 >	국립전파연구원	책임자	팀 장	구교영 (061-338-4650)
	미래전파기술팀	담당자	연구관	임재우 (061-338-4651)



붙임1

ITU 6G 목표 서비스(Usage Scenario)

통신기반 확장 서비스	몰입형 통신 Immersive Communication	초저지연 진화 통신 Hyper Reliable and Low-Latency Communication	초연결 진화 통신 Massive Communication
정 의	IMT-2020의 초고속(eMBB)을 확장하여 사용자에게 몰입형 통신 경험을 제공하는 서비스 시나리오	IMT-2020의 초저지연(URLLC)을 확장하여 더 엄격한 요구 사항(안정성, 지연시간 등)을 요구하며, 요구사항을 충족하지 못할 경우 치명적인 결과를 초래할 수 있는 서비스 시나리오	IMT-2020의 초연결(mMTC)을 확장하며, 광범위한 환경에서 다양한 유형의 장치와 센서의 유비쿼터스 연결을 제공하는 서비스 시나리오
사용례	가상현실(XR), 홀로그래픽 통신, 원격 다중감각 텔레프레즌스, 비디오/오디오 혼합 트래픽 등	스마트 산업, 자동화 공정, 에너지서비스, 원격 치료 등	스마트시티, 이동수단, 물류센터, 헬스, 에너지, 농업 등
신규 결합 서비스	인공지능 결합 통신 Integrated AI and Communication	센싱 결합 통신 Integrated Sensing and Communication	유비쿼터스 연결 Ubiquitous Connectivity
	분산 컴퓨팅과 AI 기반 애플리케이션을 지원하는 신규 서비스	감지 기능이 필요한 새로운	
정 의	IMT 시스템의 다양한 지능형 노드에서 데이터 수집, 로컬 또는 분산 컴퓨트 오프로드, AI 모델의 분산학습 및 추론을 활용하여 통신 서비스 이상의 놀라운/전문적인 사용 예를 제공	애플리케이션 및 서비스 IMT 시스템을 활용하여 광역 다차원 감지를 제공하여, 연결되지 않은 물체와 연결된 장치 및 그 움직임, 환경에 대한 공간 정보를 제공하는 통신	디지털 격차 해소를 위한 연결성 확대를 목적으로 하는 서비스 시나리오로, 현재 서비스 지원이 어려운 교외지역, 저인구밀도 지역 등을 대상으로 함



붙임2

ITU 6G 핵심성능지표(Capability)

구 분	성능지표	정 의	목표값	5G 지표
기존 5 G 지표	① 최대 전송속도 (Peak data rate)	이상적인 조건에서 달성가능한 기기당 최대 전송속도		20 Gbit /s
	② 사용자 체감속도 (User experienced data rate)	커버리지 영역 내 모바일 장치로 어디서나 사용할 수 있는 달성 가능한 데이터 속도		100 Mbit /s
	③ 주파수 효율 (Spectrum efficiency)	trum 주파수 자원 단위당 및 셀당 평균 데이터 처리량(bit/s/Hz)		4G 대비 3배
	④ 면적당 트래픽 용량 (Area traffic capacity)	지역 범위당 수용 가능한 총 트래픽 처리량	요구사항 단계에서 결정	10 Mbit /s/m²
	⑤ 보안, 개인정보보호, 복구성 (Security, Privacy, Resilience)	보안. 사용자 데이터 및 신호 전달과 같은 정보의 기밀성, 무결성 및 가용성을 보존하고 해킹, 분산 서비스 거부, 중간 공격 등과 같은 사이버 공격으로부터 네트워크, 장치 및 시스템을 보호		
		개인정보 보호: 개인 정보를 보호하는 것으로 해당 정보가 언제, 어떻게, 어떤 목적으로 타인에 의해 수집 및 처리되었고 얼마나 보관되어 왔는지에 대한 개인의 결정권 보장		(정성 지표)
		복구성: 기본 전원 손실 등과 같은 자연적 또는 인위적 장애가 발생하는 동안과 이후에도 네트워크와 시스템이 올바르게 작동하는 기능		
	⑥ 연결밀도 (Connection Density) 단위 면적당 연결 혹은 접근 가능한 장비 총 수		106~108 devices /km²	10 ⁶ devi ces/ km ²
	⑦ 이동성 서로 다른 계층 및/또는 무선 액세스 기술 (다계층/-RAT)에 속할 수 있는 정의된 QoS 및 무선 노드 간 원활한 전송을 달성할 수 있는 최대 속도		500~1,0 00 km/h	500 km/h
	® 지연시간 (Latency)	^		1 ms
	⑨ 신뢰성 (Reliability)	설정된 전송 성공률로 정해진 시간 내에 주어진 양의 트래픽을 전송하는 능력	(1-10 ⁻ 5) ~ (1-10 ⁻ 7)	1- 10 ⁻⁵

구분	성능지표	정 의	목표값	5G 지표
신규지표	⑩ 포지셔닝 (Positioning)	연결된 장치의 대략적인 위치를 계산하는 기능으로, 위치 결정 정확도는 계산된 수평/수직 위치와 장치의 실제 수평/ 수직 위치 간의 차이로 정의	1 ~ 10 cm	
	① 커버리지 (Coverage)	원하는 서비스 영역에서 사용자에게 통신 서비스에 대한 액세스를 제공하는 가능, 링크 버짓 분석을 통해 단일 셀의 셀 에지 거리로 정의		
	① 센싱지표 (Sensing-related capabilities)	무선 인터페이스에서 범위/속도/각도 추정, 물체 감지, 위치 측정, 이미징, 매핑 등의 기능을 제공하는 기능으로 정확도, 해상도, 탐지율, 오검출율 등으로 측정		-
	⑬ 인공지능 지표 (Al-related capabilities)	AI 지원 애플리케이션을 지원하기 위해 IMT 시스템 전반에 걸쳐 특정 기능을 제공하는 기능으로 분산 데이터 처리, 분산 학습, AI 컴퓨팅, AI 모델 추론 등을 포함	기 <u>술</u> 성능 요구사항	
	④ 지속가능성 (Sustainability)	지속가능성(또는 환경적 지속가능성)은 네트워크와 장치가라이프사이클 전반에 걸쳐 온실가스 배출 및 기타 환경 영향을 최소화할 수 있는 능력으로 주요 요소로 장비 수명, 수리, 재사용 및 재활용 최적화를 통한 에너지 효율 개선, 에너지 소비 최소화 및 자원 사용 등이 있음에너지 효율성은 에너지 소비 단위당 전송 또는 수신되는 정보 비트의 양(bit/Joule)으로 전체 전력 소비를 최소화하기 위한용량 증가에 따라 에너지 효율이 적절히 개선될 것으로 예상	단계에서 결정	
	⑤ 상호운용성 (Interoperability)	무선인터페이스가 구성원 포괄성 및 투명성을 기반으로 시스템의 서로 다른 엔티티 간의 기능을 가능하도록 하는 것		

